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ABSTRACT
Advances in computer vision and the parallel development of
unmanned aerial vehicles (UAVs) allow for the extensive use of
UAV in forest inventory and in indirect measurements of tree
features. We used UAV-sensed high-resolution imagery through
photogrammetry and Structure from Motion (SfM) to estimate tree
heights and crown diameters. We reconstructed 3D structures
from 2D image sequences for two study areas (25 × 25 m).
Species composition for Plot 1 included Norway spruce (Picea
abies L.) together with European larch (Larix decidua Mill.) and
Scots pine (Pinus sylvestris L.), whereas Plot 2 was mainly Norway
spruce and Scots pine together with scattered individuals of
European larch and Silver birch (Betula pendula Roth.). The
involved workflow used canopy height models (CHMs) for the
extraction of height, the smoothing of raster images for the deter-
mination of the local maxima, and Inverse Watershed
Segmentation (IWS) for the estimation of the crown diameters
with the help of a geographical information system (GIS). Finally,
we validated the accuracies of the two methods by comparing the
UAV results with ground measurements. The results showed
higher agreement between field and remote-sensed data for
heights than for crown diameters based on RMSE%, which were
in the range 11.42–12.62 for height and 14.29–18.56 for crown
diameter. Overall, the accuracy of the results was acceptable and
showed that the methods were feasible for detecting tree heights
and crown diameter.
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1. Introduction

The determination of tree height is important, mainly because of biological and com-
mercial reasons. It is a significant indicator, reflecting a site’s productive capacity of the
species concerned, when it is growing on a particular site. Site productive capacity
means the total stand biomass produced by a stand on a particular site, up to any
particular stage of its development, when the stand has been using fully the resources
necessary for tree growth, which are available from the site. Furthermore, it is height,
rather than biomass, that best reflects the site productive capacity (Shao, Zhao, and
Shugart 1996).
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Similarly, tree crown size has been shown to be a multipurpose ecological indicator. It
determines, among others, carbon sequestration, shading, risk of wind-breakage, and tree
growth. The dependence of crown size on resource supply, species, and tree age compli-
cates an accurate evaluation of a tree’s space requirement, and its size-dependent functions
and services in forested areas. Many remote-sensing applications involve the estimation of
individual tree canopy area (Kalliovirta and Tokola 2005), as an intermediate stage in
differentiating the signals reflected from the forest canopy and the forest floor, e.g. estima-
tion of timber volume (Bolduc et al. 1999; Maltamo et al. 2004). Forest canopy height is an
important structural parameter in several forest inventories; very-high-resolution digital
models have been developed to identify and quantify individual tree crowns separately
using remote technology. A digital elevationmodel (DEM) or a digital terrainmodel (DTM) is
used for bare ground modelling without considering the features on the ground surface
(Peckham and Gyozo 2007). On the other hand, digital surface models (DSMs) consider the
features on the ground surface, e.g. trees and buildings. Methods used to generate DSMs
usually focus on photogrammetric methods. However, this technique requires a well-
trained workforce, high-quality digital cameras, and precise technology that will ensure
the integrity of the data for accurate results. Several examples of the retrieval of canopy
height using multi-angle/multi-view passive imagery from airborne platforms exist (Waser
et al. 2008). Emerging techniques of computer vision in parallel with the recent advances of
unmanned aerial systems (UASs) enable the extraction of reliable 2D and 3D imagery
information from the collection of multi-angle imagery analysis taken with standard (non-
metric) cameras and derived by Structure from Motion (SfM) algorithms (Küng et al. 2011;
James and Robson 2012). These developments have made it possible to construct dense
point clouds based on feature matches (alignment) within a series of overlapping photo-
graphs, even if internal and external camera orientation parameters are not available
(Turner, Lucieer, and Watson 2012). New methods of photograph reconstruction enable
the generation of very-high-resolution DSMs and orthophotograph mosaics with high
spatial resolution (Turner, Lucieer, and Watson 2012; Fritz, Kattenborn, and Koch 2013;
Dandois and Ellis 2013; Gini et al. 2014; Sona et al. 2014), and they have been used for
environmental monitoring (Diaz Varela et al. 2014) and quantifying tree heights and crown
dimensions (Zarco-Tejada et al. 2014). Several studies have identified the potential of
combining UAV image flights and the SfM processing chain for terrain modelling
(Remondino et al. 2011; Dandois and Ellis 2013), in terms of runtime and accuracy, as well
as visual appearance of the resulting reconstructions.

A canopy height model (CHM) represents the difference between the top canopy
surface and the underlying ground topography, i.e. subtraction of DSM from DTM.
Popescu (2007) proposed that a CHM could be described as a 3D surface that contains
all the necessary information about vegetation height above ground surface. The CHM
can be effectively derived from digital image raw data through the appropriate filtering/
classification of photograph point clouds to distinguish ground and canopy points; this
separation can be achieved using various software, such as LasTools and Agisoft
PhotoScan ©, and the latter is equipped with a tool for automatic and manual ground
point classification (Agisoft). CHMs are raster images that allow us to delineate individual
tree crowns and detect treetops. Individual tree identification (ITD) based on the CHM
can be performed with a range of algorithms and procedures, including image smooth-
ing, local maxima finding, and template matching (Persson, Holmgren, and Soderman
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2002; Popescu, Wynne, and Nelson 2002; Koch, Heyder, and Weinacker 2006; Chen et al.
2006; Falkowski et al. 2006). By identifying the individual tree positions based on
smoothing and local maxima filtering, tree height can be directly measured from
CHMs using regression models (Pyysalo and Hyyppä 2002; Popescu, Wynne, and
Nelson 2003).

Watershed segmentation is an important member of the boundary detection-based
segmentation family (Carleer, Debeir, and Wolff 2005). Additionally, it is the most
popular technique used for segmenting a CHM, because it is intuitive to treat each
concave tree crown in the inverted CHM as a catchment basin. The surface of the raster
is segmented into the equivalent of individual drainage basins by identifying local
maximum and nearest minima values. Based on this approach, Inverse Watershed
Segmentation (IWS) can delineate distinct tree entities with height values and crown
diameters (Edson and Wing 2011). The method assumes that local maxima present in
the CHM are treetops; however, caution should be exercised when applying local
maxima in structurally complex forest structures. For example, multiple local maxima
are often identified within a single broadleaf crown because of the irregularity of
crowns and, in part, from random errors associated with the creation of the CHM. A
possible solution is the use of smoothing filters when constructing the CHM; however,
caution is required because strong filters may eliminate smaller trees. Popescu, Wynne,
and Nelson (2003) suggested an improved version of local maxima filtering using a
locally variable window size relative to tree height by referring to a predefined height-
crown equation that accounts for tree crown development related to tree growth.
However, other studies have reported problems correctly identifying tree crowns using
a tree-level approach, particularly in closed-canopy and denser forests. According to
Wang, Gong, and Biging (2004), the assumption that treetops are located around the
vicinity of the centre of a crown can be met only when the view area is within ±15° of
nadir. This assumption may not be applicable to trees located outside of this range
because treetops lean away from the nadir point. Moreover, for trees viewed from
outside of the near-nadir direction, the silhouettes detected from the edge-detection
methods are inconsistent with the real tree crown boundaries, whereby trees are often
misidentified or even missing in some cases.

The number and quality of algorithms are increasing rapidly. Sophisticated algo-
rithms, such as IWS, are designed to consider increasingly more aspects, in either the
preprocessing or post-processing of images, in an attempt to minimize oversight
errors and provide a friendlier processing environment for the analyst. Delineation of
individual trees is a complex process and sometimes an acceptable algorithm does not
exist, even when using systems such as human vision, which is currently considered
the most advanced image-processing tool. Bortolot (2006) investigated the practical
advantages of using CHMs and proposed the use of CHM for identifying clusters of
trees, which would correspond to a group of tree crowns for easier post-processing.

The key contribution of this article was to test the performance of photogram-
metric techniques for the estimation of tree heights and crown diameters, based on
UAV (DJI S800) SfM point clouds. We assessed the accuracy of height and crown
diameter measurements derived from point clouds compared with ground
measurements.
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2. Materials and methods

2.1. Study area and experimental design

Two research plots from the Czech Republic (see Figure 1) were included in this work;
Plot 1 is located southeast of Prague (N50.01577, E14.75998) and Plot 2 is located south
of the city (N49.81452, E14.700590). Both plots were located on flat terrain and were
625 m2 (25 X 25 m) in size. Plot 1 had 48 trees with predominantly Norway spruce (Picea
abies L.), with a few European larch (Larix decidua Mill.) and Scots pine (Pinus sylvestris L.)
individuals scattered throughout. Plot 2 had 39 trees with mainly Norway spruce and
Scots pine trees, with scattered individuals of European larch and Silver birch (Betula
pendula Roth.). We measured all trees on each plot to estimate tree heights and crown
diameters.

2.2. Analysis overview

An illustration of the methodology is summarized in Figure 2. Images were acquired
using a Sony NEX-5 R digital camera, embedded on a UAV platform DJI S800 to create
3D reconstruction models for both study areas. The images were processed and ana-
lysed in Agisoft PhotoScan© to derive the DSM and DTM for both plots, using the SfM
approach. The reconstructed mesh surface was derived from the point cloud by using

Figure 1. Plot locations in the Czech Republic. The top right photograph displays Plot 1 and the bottom
left photograph displays Plot 2. Image sources: images provided as captured and post-processed from an
RGB high-resolution embedded UAV camera using ESRI Inc. Map of the Czech Republic is from http://
www.mapcruzin.com/free-czech-republicmaps (assessed on January 2016).
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the automatic classification of points procedure, based on three parameters: a) max
angle, b) max distance, and c) cell size. To increase the accuracy of the resultant DSM
and DTM models, we placed four ground control points (GCPs) in the corners of each
square plot and we measured them with geodetic Real Time Kinematic (RTK) GPS. ArcGIS
10.3.1 by ESRI was used to create CHMs, from the difference in elevation between DSM
and DTM (i.e. CHM = DSM − DTM). To estimate the tree heights, we used local maxima
filtering, and for the crown diameters we used IWS in both study areas. Finally, statistical
paired t-tests analyses were performed on the estimated and measured variables for
both plots in order to evaluate the performance of the remote-sensing approach based
on UAV SfM point clouds.

2.3. Field measurements

Tree heights were recorded using a TruPulse 360 /B laser range finder. To minimize
height evaluation errors, the horizontal distance from the objective tree was at least
equal to the tree height to be measured. We also measured the width of horizontal tree
crown projections (east–west and north–south) for each tree using the TruPulse 360 /B
laser range finder. We measured the positions of plot trees using the azimuth–distance
approach from the plot centre, which was determined using RTK GPS Trimble Juno 3D
handheld equipment; azimuth was estimated using a handheld compass and tree
distance from plot centre was estimated using a Vertex III and Transponder T3 (Haglöf
Sweden, 2002). We also created an index of the tree species for all measured trees. All
field measurements for both plots were collected in the same month as the aerial
images were taken.

Figure 2. A flow chart to illustrate the analysis and outputs; the main objectives are in the shaded
nodes.
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2.4. Photograph acquisition and 3D model reconstruction

The DJI S800 UAV platform carried an RGB camera (see Figure 3). The camera was a Sony
NEX-5R, with a 16 MP resolution and 4912 × 3264 pixels. The camera was mounted with
a Voigtlander Super Wide Heliar lens, with a focal length of 15 mm. A drone needed
approximately 7 min to complete a flight based on the predefined parameters (i.e.
number of waypoints and time of flight), which we set using the DJI ground station
software. A point cloud of images comprising the flight path lines covered the entire
study area (see Figure 4). We performed all six flights, three flights per plot, in three
different elevations using the same parameters, i.e. flight path pattern and altitudes.

The SfM image reconstruction process resulted in 673 of the original 718 images
aligned in Plot 1 and 457 of the original 480 images aligned in Plot 2. We extracted both

Figure 3. This is a scaled image that illustrates the actual size of the multirotor UAV (DJI S800) that
was used for photograph acquisition (source: Přemysl Janata).

Figure 4. Flight performance for image acquisition at three different elevations (Plot 1, autopilot
mode).
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DSM and DTM (0.05 x 0.05 m cell size) as constructed from the total amount of aligned
images for each plot using Agisoft PhotoScan©. We initially reconstructed the DTM mesh
using automatic classification, based on classified sparse point clouds of the ground
(as opposed to the construction of the DSM, which was based on the complete dense
point cloud). The automatic classification was based on three parameters: i) maximum
angle (deg), ii) max distance (m), and iii) cell size (m). In addition to the extraction of
DSM and DTM, we located four reference points for each plot. GCPs distributed within
the study areas (mainly at larger gap areas), measured with geodetic RTK GPS with
centimetre accuracy, whereas the coordinate system was set to S-JTSK/Krovak East North
(a local coordinate system that is mainly used in the Czech Republic).

The imagery and the synchronized on-board GPS position for each single image were
used as input for image positions. During the alignment process, when the algorithm is
trying to find and match points between overlapping images and refine the image
positions for each photograph separately, we set the accuracy to high.

2.5. Calculation of tree heights

The setting parameters for local maxima were determined using the morphological
filter-focal statistics tool in ArcGIS. This morphological filter is preferred when we need
to identify the highest pixel value on the treetop from the CHM; therefore, it can be used
to eliminate the possibility of having multiple local maxima within a single crown area.
For individual tree position detection from the UAV platform, we used the adaptive
filtering method based on CHM height values. In this method, an image-smoothing step
was applied to the CHMs using low-pass filters to reduce the noise effect and regulate
the values of the smoothing window as a stepwise function of the heights of the CHM
(Dralle and Rudemo 1996; Pitkänen et al. 2004). Tree height was derived from the CHM
based on the evaluation of local maxima, which were considered to be treetops
(Figure 5(a)). The CHM was calculated by subtracting the DSM from the DTM using
ArcGIS 10.3.1 by ESRI ©. This decision is usually based on the particular geometry of the
forest structure and the spatial pattern of the targeted trees. Prior to any further
calculations, and depending on the structure of tree crowns and resolution, values

Figure 5. Example to illustrate (a) local maxima seeds identified as tree tops, and (b) tree crowns
derived from the process of the IWS algorithm.
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were approximated to the nearest integer number of pixels. Among the several proces-
sing types we tested, in different variances of radius by using circular-shaped areas, we
obtain the best results by setting a radius of eight-cell units within a kernel range rm ϵ
{1, 2, 3, 4, 6, 8. . ..18} for Plot 1 and 18-cell radius for Plot 2, respectively. We hypothesized
that different kernel radii were necessary for plots because the canopy structure of the
trees of plot 2 was more circular; when we applied the same eight-cell kernel radius,
similar to that in Plot 1, multiple pixels were identified as a treetop; thus, we increased
the filtering value to identify a single treetop. Plot 2 trees were older and taller
compared with those in Plot 1, which produced more oval/spherical shapes, unlike
Plot 1 trees, which had more conical crown shapes (see Figure 6).

Focal statistics is a filtering tool that we used to identify the treetop location, based
on the maximum pixel value in each kernel. Then we extracted the common pixel
values, derived from the process of the focal statistics tool together with the CHM, to
determine the positions of the highest pixel values (tree positions). For each input cell
location, focal statistics calculate a statistic of the values in the form of weights within a
specified neighbourhood around it; it returns Mean, Standard Deviation, or Sum values
as needed. To match the pixel values from CHM and the focal statistic result, we used
equation (1):

Con 0CHM0 ¼¼ 0focal statistics result0; 1ð Þ: (1)

Conditional tool (Con) performs a conditional if/else evaluation on each of the input cells
of an input raster and returns back the binary value of 0 (for non-data) or 1 (for data
value). The return value was the value when the CHM value equalled the focal statistics
output (raster).

When we tried to match the efficiency of tree positions obtained from the UAV
platform with the field measurements, we detected a slight spatial inaccuracy (tilted
positions of trees resulted from the UAV) caused by the lack of precision of the on-board

Figure 6. Example to illustrate the potential problems of identifying tree heights using different
kernel radius sizes in forests with different tree shapes and structure for Plots 1 and 2.
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GPS. To solve this problem, we used the azimuth and horizontal distances, measured in
the field to identify the X, Y tree positions. For each plot, we georeferenced four tree
point positions, in order to match the tree positions acquired from the UAV with those
of the terrestrial data.

2.6. Calculation of crown diameters

For individual tree canopy delineation, we used the method of IWS, as proposed by
Edson and Wing (2011). We used the IWS method in ArcGIS 10.3.1 (ESRI) mainly because
of its ability to delineate distinct tree entities, especially in relatively closed forest canopy
structures. To implement the IWS, we inverted the CHM raster surface, whereby treetops
become ‘ponds’ and tree branches/crowns become watersheds. Using the inverted CHM,
we then created the flow direction layer to create individual hydrologic drainage basins
(Wannasiri et al. 2013), which identified the crown delineations in the form of a raster
layer. However, this layer contained large gaps located between tree crowns. To identify
the tree crowns for delineation, we used the Boolean layer of the CHM to reclassify the
new output into two different categories. For Plot 1, the first category identified all of
the pixels that had values greater than 17 m (pixel values = 1) and the second category
identified all pixel values less than 17 m, including gap areas (values = 0). We deter-
mined this threshold value by testing a range of different height values (14–19 m); this
range was based on the shortest trees in the plot and the ground field height measure-
ments. Plot 2 had taller trees; thus, we had to increase the threshold value to 20 m. To
identify all the gap areas in the plots, we multiplied the result of the Boolean layers with
the basin layer.

Finally, we converted the inverted CHM to polygons, to provide a layer for measuring
the crown diameters, as shown in Figure 5(b). Shapefiles were exported as polygons to
delineate tree crowns; we used the QGis V 2.12.0 (®Free–Open Source Software
Foundation, Inc., Boston, MA, USA) package to measure the crown diameters. We
established the centre for each polygon and we converted the polygons to lines and
then line to points to assign the points to the periphery of each polygon; we then used
the distance tool to find the diameter of the crown. To preserve the integrity of our data,
all GIS measurements of the crown diameters were performed in the same manner as
the field data collection when applicable, e.g. orientation of diameter measurements
(north–south and east–west).

2.7. Statistics and validation of data

To compare the estimates of tree height and crown diameter from UAV flights with field
measurements, we used a tree-level approach. All statistical analyses were conducted in
MATLAB (MathWorks®), Inc. and Excel (Microsoft® office). We used linear regression
analysis to model the relationship between the estimated and measured variables and
we calculated the R-squared as a metric for accuracy. Additionally, box-and-whisker plots
were used to illustrate the variance for the measured and estimated variables. To
determine whether the estimated heights and crown diameters were significantly
different from the measured values, we compared the mean of differences using con-
fidence intervals and paired t-tests. We also calculated the residuals as the difference
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between individual tree parameters estimated from the CHM and the field measure-
ments. As a better illustration for the distribution of error around the mean of data (how
close predictions are to the eventual outcomes), we also computed the mean absolute
error (MAE) and then we evaluated the residuals for each plot for both measured and
estimated variables. The MAE is given by Equation (2) as follows:

MAE ¼ 1
n

Xn

i¼1

fi � yij j ¼ 1
n

Xn

i¼1

eij j: (2)

As the name suggests, the MAE is an average of the absolute errors,
eij j ¼ fi � yij j where fi is the prediction and yi is the true value.

3. Results

3.1. Tree height and crown estimation

Plot 1 had 49 trees and Plot 2 had 39 trees; the height measures (terrestrial data) and
crown diameter estimations (UAV data) of each plot are summarized in Table 1. In Plot 1,
the median and mean height values indicate UAV data underestimated tree heights (see
Table 1) and overestimated crown diameters; in Plot 2, both tree heights and crown
diameters were overestimated.

Linear regression (see Figure 7) exhibited a strong relationship between the estimated
andmeasured tree heights in Plot 1 (R2 = 0.75) and Plot 2 (R2 = 0.72). Similarly, the estimated
crown diameters in Plot 1 (R2 = 0.63) and Plot 2 (R2 = 0.85) also showed good fit with the
estimated values (see Figure 10). In general, taking a better look (see Figure 8; Figure 11) for
both tree variables and both study areas and in accordance with the above results, we can
point out that we have wider ranges of variation of mean values between the estimated
values compared with the terrestrial measurements in case of height. On the contrary,
exception is the means of crown variable for both plots (see Table 3).

To improve the regression model, we also calculated the residuals. More specifically, in
Plot 1, the MAE of height was 2.62 m, and the height accuracy was lower in Plot 2 with MAE
of height equal to 2.88 m (see Figure 9). For crown diameter, the results were similar to the
higher accuracy in Plot 1 (MAE = 0.73 m) compared with Plot 2 (MAE = 0.80 m) (see
Figure 12). The estimated and measured tree heights and crown diameters in Plot 1 had a
mean difference of 1.55m and –0.42m, respectively, whereas in Plot 2 themean differences
were –2.35 m and –0.70 m, respectively (see Figure 13; see Table 5).

Table 1. Statistics of the measured and estimated height variables for the two study areas at the tree
level.

Plot 1 Plot 2

Measured tree height
(m)

Estimated height (UAV)
(m)

Measured tree height
(m)

Estimated height (UAV)
(m)

H min 13.3 16.2 17.9 20.4
H Q1 21.3 20.8 24.5 27.5
H median 24.2 22.5 26.7 29.9
H Q3 28.1 24.1 30.1 31.2
H max 34.4 30.1 32.7 34.8
H mean 24.2 22.3 27.0 29.4

CD: crown diameter (min, max, and median values); Q: quartiles (Q1:25% (lower) – 50% (median) – Q3: 25% (upper)).
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The root mean square error (RMSE) (m) for height (see Table 2) in Plot 1 was 3.00 m and
it was 3.08 m in Plot 2, whereas the crown projection RMSE (m) in Plot 1, 0.82 m, was
obviously lower than the RMSE (m) of 1.04 in plot 2 (see Table 4). However, because the
plots had different means, we wanted to normalize the RMSE by dividing the RMSE by the
mean of the plots to calculate the RMSE% for comparing the accuracy between the plots.

RMSE% for height (see Table 2) and crown diameter (see Table 4) evaluation varied by
plot, ranging from 11.42 to 18.56. Particularly, in Plot 1 the estimation of height and
crown diameter RMSE% was similar, 12.62 and 14.29, respectively, but for Plot 2 the
RMSE% were quite different for height (11.42) and crown diameter (18.56) estimates. In
both plots, the estimated and measured values for height and crown diameter were
similar, as supported by the R2 values of the linear regression models.

According to the t-test result, the absolute value of the t-statistics for the estimated
heights and crown projections in both plots exceeded the critical values (see Tables 2

Figure 7. Linear regression models of the estimated (UAV) and measured (ground truth) heights for
Plot 1 (a) and Plot 2 (b).

Figure 8. Box-and-whisker plots of the measured and estimated height variables for both study
areas based on 48 trees in Plot 1 (a) and 39 trees in Plot 2 (b).
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and 4); based on this result, we rejected the null hypothesis and concluded that the two
plot means were different at a 0.05 significance level.

4. Discussion

Low-altitude UAV imagery may be used to systematically observe forest canopy height
(Baltsavias et al. 2008; Dandois and Ellis 2010). Structural forest attributes are commonly
extracted from the CHM by means of regression models to predict tree features for
forest inventories (e.g. descriptive statistic of the CHM on a particular area) (Næsset,
2002; Næsset et al. 2004). The practical outcomes of CHMs, in combination with
terrestrial measurements, are the prediction of forest attributes of interest, e.g. crown
diameter and height estimation.

Figure 10. Linear regression models of the estimated (UAV) and measured (ground truth) crown
diameters for Plot 1 (a) and Plot 2 (b).

Figure 9. Residual plots displaying the distribution of errors around the mean estimated height for
Plot 1 (a) and Plot 2 (b).
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Based on the t-test results, we rejected the null hypothesis because the means for
both plots were different at a 0.05 significance level. Although the differences
between means were significant according to paired t-tests, the error of estimates
from the UAV was relatively small and therefore considered acceptable. However,
low accuracy, especially crown diameter, was observed in both plots (RMSE
% = 14.29), but with lower accuracy in Plot 2 (RMSE% = 18.56) (see Table 4). This
can be partially explained by the combination of pixels from gap areas with the
pixels of ‘real’ crown area, which can cause overestimation of crown diameter (Diaz
-Varela et al. 2015).

Absolute RMSE (m) showed a higher agreement for crown diameter than height for both
Plot 1 (0.82 m) and Plot 2 (1.04 m). Estimates of height and crown diameter had an RMSE%

Figure 11. Box-and-whisker plots of both measured and estimated crown diameters for both study
areas based on 48 trees in Plot 1 (a) and 39 trees in Plot 2 (b).

Figure 12. Residual plots displaying the distribution of errors around the mean estimated crown
diameter for Plot 1 (a) and Plot 2 (b).
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lower than 20 formost results. Zarco-Tejada et al. (2014) compared the height data retrieved
from high-resolution images and groundmeasurements; similarly, they determined that the
RMSE% ranged between 10 and 13, depending on the study area. In Plot 2, where the

Figure 13. The mean of differences for the estimated–measured tree heights and crown diameters
for both plots.

Table 2. Statistical summary of height estimates for Plots 1 and 2.
RMSE
(m)

RMSE
% Bias

Bias
%

MAE
(m)

P(T ≤ t) two-tail
t-test

t Critical two-tail
t-test

t
Stat p-Value df

Plot 1 3.00 12.62 −1.55 −6.99 2.62 0.15 2.01 4.14 0.00 47
Plot 2 3.08 11.42 2.35 8.02 2.88 0.00 2.02 7.27 0.00 38

RMSE: root mean square error; RMSE%: root mean square error percentage; MAE: mean absolute error; bias; bias%: two-
tailed t-test; t-statistic; df: degrees of freedom.

Table 3. Statistics of the measured and estimated crown diameter variables for the two study sites at
the tree level.

Plot 1 Plot 2

Measured CD (m) Estimated CD (UAV) (m) Measured CD (m) Estimated CD (UAV) (m)

CD min 3.5 3.8 2.4 2.2
CD Q1 5.4 5.9 4.4 5.0
CD median 5.8 6.4 5.4 6.3
CD Q3 6.0 6.8 6.6 7.6
CD max 8.0 8.6 11.2 11.1
CD mean 5.7 6.2 5.6 6.3

CD: crown diameter (min, max, and median values); Q: quartiles (Q1:25% (lower) – 50% (median) – Q3: 25% (upper)).

Table 4. Statistical summary of crown diameter estimates for Plots 1 and 2.

RMSE (m) RMSE % Bias Bias% MAE (m) P(T ≤ t) two-tail t-test
t Critical two-tail

t-test t Stat p-Value df

Plot 1 0.82 14.29 0.43 6.92 0.73 0.00 2.01 4.17 0.00 47
Plot 2 1.04 18.56 0.70 11.11 0.80 0.00 2.02 5.61 0.00 38

RMSE: root mean square error; RMSE%: root mean square error percentage; MAE: mean absolute error; bias; bias%, two-
tailed t-test; t-statistic; df: degrees of freedom.
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discontinuous canopy yielded a higher percentage of gap areas, RMSE% for crown diameter
was 18.56, which is still acceptable when compared with errors that may occur with field
measurements (Diaz-Varela et al. 2015; Paulus et al. 2014; Paproki et al. 2012).

Height and crown diameter estimates for Plot 1 were closer to the measured variables
(see Table 5; see Figure 13). In addition, the confidence intervals indicated that the mean of
the estimated crown diameters for both plots was significantly more similar than the
estimated height variables, which were significantly different (underestimation of heights
for Plot 1 and overestimation of height for Plot 2). These findings may be attributable to the
differences in heights of trees (mean Plot 1 = 24.2 m, mean Plot 2 = 27 m) and similarity of
crown diameters (mean Plot 1 = 5.7 m, mean Plot 2 = 5.6 m) in the two plots.

Although the proposed approach caused some systematic errors related to image
smoothing, it can result in low and acceptable errors, which can be useful for monitoring
the variation of forest attributes relevant to forest management (Diaz-Varela et al. 2015).

5. Conclusions

In this study, we tested the performance of tree detection algorithms based on UAV SfM
point clouds, and we assessed the accuracy of tree height and diameter measurements
derived from both point clouds. We reconstructed 3D forest canopy models based on
SfM techniques to evaluate tree height and crown diameter. The proposed workflow
consists of UAV image acquisition data from an RGB camera, processing of the point
cloud, construction of the CHM from DSM and DEM, and GIS processing-analyses and
watershed algorithm application for the calculation of tree variables. Many studies have
previously treated estimates of tree parameters, such as tree crown delineation and
treetop detection, as two separate procedures (Wang, Gong, and Biging 2004). In fact,
tree crown boundaries and treetop detection should be considered as continuous
processes; the derivation of one aspect can assist in the solution of the other.
However, these assumptions have some limitations and can only be applied to forest
structures with more homogeneous crown structures, especially with large crowns,
because otherwise several local maxima can be found for a single crown surface. In
addition, the location of the treetop is the basis for extracting tree height and delineat-
ing the crown projection area. We found that the choice of filters for smoothing the
CHM has a significant influence on the detection of treetops. Therefore, the decision on
how to determine the treetop location is critical and it is largely based on the knowl-
edge and experience we have about the structure of the forest. It is also worth noting
the fact that estimations from photos tend to show a slightly higher dispersion of data,

Table 5. Statistical summary table displays the confidence interval of mean value of differences,
standard deviation, the size of the sample plots (total number of observations), the confidence
interval as an estimated range of values, and the two-sided confidence limits for both plots.

Number of
Plots

Mean
(m)

Standard Dev.
(m)

Sample
Size

Confidence
Interval (m)

Confidence Range (m)

Upper
Bound

Lower
Bound

Height 1 1.55 2.59 48 2.04 0.75 0.75
2 –2.35 2.02 39 2.02 0.65 0.65

Crown Diameter 1 –0.42 0.71 48 2.04 0.21 0.21
2 –0.70 0.78 39 2.02 0.25 0.25
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which could be associated with image artefacts related to data acquisition, errors during
processing, or human factors during ground measurements. In fact, the nadir view of the
tree crown, taken from remote sensors in the height estimation, could account for tree
irregularities, which may go unidentified by individuals taking ground measurements
(Moorthy et al. 2011).

To potentially improve the results of the 3D image reconstructionmodel and ensure the
integrity of the results based on CHM, we used four ground reference points, measured
with RTK GPS. In this study, instead of using a more sophisticated approach for treetop
estimates, we simply tested and used threshold values applied on morphological filters to
remove non-treetop maxima. Concerning the estimation of crown diameters, large gaps
between the trees within our study area produced an inaccurate delineation of solitary
trees using IWS. To correct the model and leave only the tree crowns for delineation, we
excluded the areas with elevation lower than 17 m in the layer of CHM for Plot 1, and 20 m
in the same layer for Plot 2 (because the shortest trees found in Plot 1 and Plot 2 were 17m
and 20 m, respectively); this produced the best fitted delineation for our trees. Pixels with
high elevations may be the result of bushes or leaf present in the gap areas, a factor that
can result in the misidentification of tree crowns.

As a general conclusion regarding the performance of remote sensing versus field mea-
surements, we can say that the comparison between reference field measurements and
remote-sensing estimation of crown parameters confirmed the performance of the workflow
applied as a quick and effective alternative to characterize forest tree crown diameters. Finally,
high accuracy of height and crown diameter estimates was produced for both plots; based on
the RMSE% values comparing remote-sensing and field techniques, crowndiameter appeared
to be of lower accuracy for both plots, but the results were considered satisfactory.
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